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ABSTRACT: In this paper, we present Plane symmetric, Cylindrically Symmetric and Spherically Symmetric Black hole or 

Vacuum solutions of Einstein Field Equations(EFEs). Some of these solutions are new which we have not seen in the literature. 

This calculation will help us in understanding the gravitational wave and gravitational wave spacetimes. 
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1 INTRODUCTION 
General plane symmetric, cylindrically symmetric and 

spherically symmetric static spacetimes are consider for 

calculating the vacuum solutions of EFEs [1]. The calculation 

is straight forward, we calculate the Ricci tensors of the 

generally plane symmetric, cylindrically symmetric and 

spherically symmetric static spacetimes and put these Ricci 

curvature tensors equal to zero. Obtaining a system of three 

non-linear partial differential equations in plane symmetric 

case, four non-linear partial differential equations in 

cylindrically symmetric and three non-linear partial 

differential equations in spherically symmetric static 

spacetimes. The solutions of these system give us the required 

vacuum solutions of EFEs in each case. In all these calculation 

we are searching all those spacetimes which are the vacuum 

solutions or black hole solutions of EFEs [2]. In all our 

calculation we have seen only one singularity which is the 

essential singularity and occur at 0=r . These spacetimes 

will help in understanding of the gravitational wave spacetime, 

black hole [3] and asymptotic behavior of black hole [4].  

2  Plane symmetric Static Spacetimes and Vacuum 

solutions of EFEs 

Consider the following general plane symmetric static 

spacetime  

).(= 22)(22)(2 dzdyedxdteds xx  
 (1) 

 We find the Ricci curvature tensors for this spacetimes and 

put them equal to zero. We get a system of three non-linear 

partial differential equations in two unknown functions )(x  

and )(x , 
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 Which is the famous Taub Spacetime. This is a static 

gravitational wave spacetime and we check that it does not 

admit time conformal perturbation to form it an actual 

non-static gravitational wave spacetime [5]. We can see that 

there is only one singularity at 0=r . For time conformal 

perturbation either one of the exponent of 


x
 is 2  or 

)(ln=)(=)(



x

axx . Which mean that the metric for 

plane symmetric vacuum solutions of EFEs must be static and 

independent of time as was proved by Taub in his paper [10]. 

 

3  Cylindrically Symmetric Static Vacuum Solution of 

EFEs 

 The general metric of cylindrically symmetric static 

spacetimes is [1]  

.= 2)(2)(22)(2 dzededrdteds rrr     (4) 

 We calculated the Ricci tensors of the spacetimes given in 

equation (4) and put them equal to zero we get the following 

system of four non-linear partial differential equations in 

unknown functions )(r , )(r  and )(r .  
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 The solution set to the system (5) is  
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The solutions (i), (ii) and (iii) are the cone solutions that is they 

are the flat spacetimes where all the Reimann curvature 

tensors are vanishing (Minkowski spacetimes) [9]. The 

remaining solutions from (iv) to (ix) are the solutions of EFEs 

which have some important features. We are going to discuss 

some of the important points about the spacetimes. The metric 

for case (iv) in solution set (6) takes the form  
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Here the exponents of 


r
 are the following functions  
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 The importance of these exponents are describe in the 

following lines. The functions )(1 af , )(2 af  are defined on 

the domain ),
2

3
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2

1
,(  U  and the function )(3 af  

are define for all real a  except at 0=a . For 
2

1
= a  the 

solutions )()( ixiv   are the cone solutions as given in )(i , 

)(ii  and ),(iii  while for 
2

3
=a  we have the following 

solutions
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 The coefficients given in )(m  are again the same as given in 

equation (3), that is, it is the Taub spacetime and the 

coefficients given in )(k  and )(l  are new which we have 

not seen in the literature. It is interesting to note that for 

4

3
= a  we get the solution set (9) again in different order 

that is for this value of a  we have 
3

2
=)(1 af ., 

3

4
=)(2 af  and 

3

4
=)(3 af . 

4  Asymptotic behavior 
For asymptotic behavior of these spacetimes we need to draw 

graphs of function given in (8) and check the limits of these 

functions. The limiting values of )(1 af , )(2 af  and 

)(3 af  are as follows, when a  then 2)(1 af , 

0)(2 af  and 0)(3 af  while when a  then 
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0)(1 af , 0)(2 af  and 2)(3 af  so in all the 

limiting cases we have the cone solutions of EFEs which are 

given in )(i , )(ii  and )(iii . Otherwise we will have the 

curvature in the spacetimes and will get some gravitating 

source in the spacetimes other than the energy momentum 

tensor T  [8]. It is evident from the graphs of the functions 

)(1 af , )(2 af  and )(3 af  given in the following figures, 

that there is always a singularity at 0=r  in all cases, which 

is the essential singularity, and there is no other singularity in 

these cases [6]. 

 

  
 

  Figure  1: Graph of )(1 af  

  
 

Figure  2: Graph of )(2 af  

  

 

   

Figure  3: Graph of )(3 af  

Cylindrically symmetric vacuum solution of EFEs do not 

admit time conformal perturbation. Therefore the line element 

of cylindrically symmetric vacuum solution of EFEs must be 

in dependent of time. For the spacetime (7) we have three 

possibilities to admit time conformal perturbation 

(1): )(=)(=)( 321 afafaf , 

(2): 2=)(1 af  and )(=)( 32 afaf , 

(3): 2=)(=)( 32 afaf . 

But it is clear from the graphs of these functions that non of 

these three conditions satisfied, which confirm that the line 

element of cylindrically symmetric vacuum solutions of EFEs 

are independent of time.  

5  Spherically symmetric Vacuum Solution of EFEs 

 The general metric for spherically symmetric static spacetime 

is [7]  

)sin()()(= 2222222  ddrdrrdtrds   (10) 

For 0)(=)( rrnu  , obtaining the general Ricci 

curvature tensors for this spacetime and them equal to zero we 

have  
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 the solution of this system is  
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where m  is an arbitrary constant. These values of )(r  and 

)(r  are define the famous Schwarzschild spacetime. For 

spherically symmetric static spacetime we get exactly one 

vacuum solution which is the Schwarzschild spacetime.  
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6  CONCLUSION 
 Here we presented plane symmetric static, cylindrically 

symmetric static and spherically symmetric static vacuum 

solutions of EFEs. In all the three cases we consider the 

general form the corresponding spacetimes find the general 

form of Ricci curvature tensors in each case and put them 

equal to zero we obtained system of determining partial 

differential equations. The solution of the determining partial 

differential equations provide us the require vacuum solutions 

of EFEs in each case. In section 2 plane symmetric static 

vacuum solutions are discussed. There is only one plane 

symmetric static vacuum solution of Einstein field equations. 

In section 3 we find all the cylindrically symmetric static 

vacuum solutions. Most of the spacetimes obtained in section 

3 are new in the literature. Section 4 consist on the calculation 

of spherically symmetric static vacuum solution. Here we 

obtained only one solution which is the famous Schwarzschild 

solution of EFEs.  
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